

JPL Phase Retrieval Camera

Andrew Lowman, Dave Redding,
Joe Green, Scott Basinger
Yuri Beregovski, Randy Hein
Cathy Ohara, Fang Shi

Jet Propulsion Laboratory California Institute of Technology

May 10, 2001

Overview

- NGST Phase Retrieval Camera (PRC) is a portable, selfcontained device for phase retrieval wavefront sensing
- Useful for optical testing in high-jitter environments
 - MSFC test chamber for NMSD and AMSD mirrors
 - NGST Contractor testbeds
- Enables wavefront control experiments outside NGST's Wavefront Control Testbed (WCT)
 - Phase retrieval experiments
 - DM testing
 - Early experience sensing and controlling NGST primary optics
- Capitalizes on WCT hardware/software infrastructure

Modified Gerchberg-Saxton Phase Retrieval

- Gerchberg-Saxton inner loop iterates between pupil and image planes
 - -FT from pupil to image, IFT from image to pupil
 - Constrain field at image and at pupil by replacing amplitude with sqrt of image data
- Defocussed images improve visibility of aberrations
 - Spread out effects over many pixels
 - Reduce impact of jitter, other blurring
 - Reduce contrast between low, high-f effects
- Subtracting known phase (Θ_0, Θ_{DIV}) from the iteration reduces dynamic range
 - $-\Theta_0$ is systematic across all images
 - ODIV is difference between images from embedded MACOS model
- Multiple images overdetermine solution to ensure uniqueness
 - Provides more data without introducing new unknowns
- Phase unwrapping allows estimation of WFE> λ
 - Joint unwrapping improves unwrapping robustness
- · Prescription Retrieval also used
 - Complementary algorithm provides more dynamic range, less spatial resolution
 - Used to find Θ_0

WF Sensing Example

- WCT experience shows WF sensing performance:
 - Repeatibility = $\lambda_{633}/110$; PRC is better sampled and should do better
 - Range = a few waves P-V deviation from nominal
 - Relatively tolerant of jitter, lab seeing

- 2- or 3-color source module for measuring segment piston
- 0.3 millisecond shutter to freeze seeing, jitter
- Test optic imaged onto iris (pupil) for telecentricity
- Camera on translation stage for WFS
- Reference camera to register boresight

Source Module

- Multiple fiber-coupled diode laser source
- Output from single mode fiber connected to sources by fiber couplers
- Fiber-coupled laser diodes
 - Wavelengths 635, 670, 780 nm readily available
 - Temperature and current stabilized diodes give high amplitude stability (0.1% variation over one hour)
- Inline fiberoptic attenuators control source flux

Phase Retrieval Channel

- Provides imagery for phase retrieval (including prescription retrieval) processing
- System telecentric in image space
- ~ Nyquist sampling (f/25)
- Science-grade CCD camera
 - 9 um pixels, TE cooler (+ 10 °C), 768 by 512 format,
 Photometrics SenSys
- Translation stage implements focus diversity
 - Newport 4" fast stage
- Flip-in pupil imaging lens
 - New Focus motorized flipper
- Flip-in flat provides for self-calibration
 - New Focus motorized flipper

Reference Channel

- Provides boresight jitter information
- Takes images simultaneously with PR images
 - Magnified (4X) in-focus PSF provides centroid accuracy
 - Neutral density filters permit full-well operation
 - Source intensity is varied to assure full-well in PR camera
 - Calibration with cameras in focus determines relative boresight
 - Jitter is common-path between cameras
 - Shift-and-add processing of PR camera images establishes correct centering for PR processing

Computers and Software

- PC travels with box to drive stages, grab images, provide communications to Executive
 - Utilizes modified WCT PC software
- Operated locally or remotely using SPARC workstation
 - Utilizes modified WCT Executive software
 - Phase and prescription retrieval
 - Internet-based communications
 - Matlab GUI driven
 - Parallel processing for speed (~3 minutes for phase retrieval)

Assembled Hardware

Calibration of F/# and Best Focus

- The location of the optical cutoff frequency indicates that the system is about 4% undersampled with the fixed aperture.
- This also indicates that the F/# of the PRC is 25.6±0.1. (λ =675.5nm and Δ =9 μ m)
- By optimizing the defocus Zernikes to match the defocused PSFs we can calibrate both F/# and best focus.

Parameter		Calib	ration	l
System F/#	4.7 4.7	25.5		
		-2.84 1		
Best Focus:				
Inducible De	efocus:	0.285	waves	s/mm

PSF measurement taken at +7.5mm, 10 frames co-added

Phase Retrieval

IS NICET

- Used ± 15 mm and ± 7.5 mm imagery with the MGS algorithm
- Resulting OPD indicates 16.5nm $(0.025~\lambda_{670})$ rms wavefront error, primarily due to 3rd order astigmatism.

 MGS Estimate of OPD

 Redully Integrated Power Spectral Density

Phase Retrieval (continued)

- OPD estimate from MGS provides a good fit over the set of defocused imagery.
- 0.2 pixel low-frequency jitter measured and modeled
- Fit improves by including a high-frequency (kHz) blurring kernel with σ =0.6 pixels
- Negative images are displayed to highlight modeling errors

-15.0 mm

PSF

Measurement

PSF

Model

Model

Error

Reference Camera Magnification Calibration

Current Work

• Calibration

- Reference camera boresight shift with ND filter
- Effect of shutters on internal jitter
- WFS repeatability

• Optics

- Fiber alignment (center illumination pattern)
- OAP (reduce astigmatism) ???
- Stake with epoxy
- Install diverger lens

• Testing

- Dynamic range
 - Low-quality spherical mirror + distorting mount
- Compare to interferometer
- High jitter cases

Conclusion

- Phase Retrieval Camera assembled, undergoing testing
- Good performance
 - Small internal wavefront error
 - $0.025 \lambda_{670} RMS$
 - Small internal jitter
 - 0.2 pixels on wavefront sensing camera
 - Highly correlated with reference camera